
Dynamics of Random Graphs 
with Bounded Degrees

Eli Ben-Naim
Los Alamos National Laboratory

Talk, paper available from: http://cnls.lanl.gov/~ebn

E. Ben-Naim and P.L. Krapivsky, J. Stat. Mech. P11008 (2011) & EPL 97, 48003 (2012)

APS March Meeting, February 27, 2012

with: Paul Krapivsky (Boston)
thanks: Wolfgang Losert (Maryland)

http://cnls.lanl.gov/~ebn
http://cnls.lanl.gov/~ebn


Plan
• Evolving random graphs with bounded degrees

• Degree distribution

• Hamilton-Jacobi theory of evolving random graphs 
with unbounded degrees 

• Hamilton-Jacobi theory of evolving random graphs 
with bounded degrees

• Finite-size scaling laws



Evolving Random Graph

• Initial state: regular random graph (degree = 0 )

• Define two classes of nodes

- Active nodes: degree < d

- Inactive nodes: degree = d

• Sequential linking

- Pick two active nodes

- Draw a link

• Final state: regular random graph (degree = d )
Erdos 60, Wormald 84



✓ d=1 microscopic graphs, dimers  

✓ d=2 mesoscopic graphs, rings 

? d≥2 one macroscopic graph = “giant component”

- Nonpercolating phase: microscopic graphs only

- Percolating phase: one giant component coexists 
with many microscopic graphs

Percolation Transition

Question
How many links (per node) are needed for 

the giant component to emerge?

Answer
0.577200 (when d=3)

Nk = k−1



Degree Distribution
• Distribution of nodes with degree j is

• Density of active nodes 

• Linking Process

• Active nodes control linking process, 
effectively linear evolution equation

• Solve using an effective time variable

ν = n0 + n1 + · · ·+ nd−1

nj

dnj

dt
= ν (nj−1 − nj)

τ =

� t

0
dt� ν(t�)

Truncated Poisson Distribution

(i, j) → (i+ 1, j + 1) i, j < d

nj =
τ j

j!
e−τ

j < d

Wormald 99

ν = 1− nd
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Degree Distribution

Isolated nodes dominate initially
All nodes become inactive eventually



Unbounded Random Graphs

• Cluster = a connected graph component

• Links involving two separate components lead to merger 

• Aggregation rate = product of cluster sizes

• Master equation for size distribution

• Master equation for generating function

Kij = ij

dck
dt

=
1

2

�

i+j=k

ijcicj − kck ck(t = 0) = δk,1

Erdos-Renyi
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Hamilton-Jacobi Theory I
• Master equation is a first-order PDE

• Recognize as a Hamilton-Jacobi equation

• By identifying “momentum” and “Hamiltonian”

• Hamilton-Jacobi equations generate two coupled ODEs
dx

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂x
=⇒ dx

dt
= x(1− xp),

dp

dt
= −p(1− xp)

∂C
∂t

+ x
∂C
∂x

=
1

2

�
x
∂C
∂x

�2

∂C(x, t)
∂t

+H(x, p) = 0

p =
∂C
∂x

and H = xp− 1

2
(xp)2

C(x, 0) = x

x(0) = 1− g p(0) = 1

Initial coordinate unknown, final coordinate known!
Hamiltonian is a conserved quantity
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Solution I

• Coordinate and momentum are immediate

• Size of giant component found immediately

• Satisfies a closes equation

• Nontrivial solution beyond the percolation threshold

The giant component emerges when                     
the average degree equals one

g = 1−
�

k

k ck = 1− p(0)

tg = 1

x = (1− g)egt p = e−gt

1− g = e−gt



• Total size of components provides insufficient description

• Describe components by a d+1 dimensional vector whose 
components specify number of nodes with given degree

• Multivariate aggregation process

• Aggregation rate is product of the number of active nodes

• Why can’t we get away with two variables only?

• Node degrees are coupled!

Bounded Random Graphs

K(l,m) = (l − ld)(m−md)

k = k0 + k1 + · · ·+ kd(k0, k1, · · · , kd)

0 → 1 → 2 → 3

(0, 2, 1, 2) (0, 3, 1, 1)



Hamilton-Jacobi Theory II
• Master equation is a first-order PDE

• Recognize as a Hamilton-Jacobi equation

• By identifying “momentum” and “Hamiltonian” 

• Hamilton-Jacobi equation give 2(d+1) coupled ODEs

Initial coordinates unknown, final coordinates known!
Equations are now in d+1 dimensions! 

Hamiltonian no longer conserved!

∂C

∂τ
=

1

2ν




d−1�

j=0

xj+1
∂C

∂xj




2

−
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∂C

∂xj

C(x, 0) = x0

∂C(x, τ)

∂τ
+H(x,∇C, τ) = 0

H(x,p, τ) =
d−1�

j=0

xjpj −
Π2

1

2ν(τ)
Πj =

d�

i=j

xi pi−j

dxj

dt
=

∂H
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dpj

dt
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ν
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dt
=
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ν
pj−1 − pj
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Solution II
• Find hidden conservation laws and explicit backward equations

• reduce 2(d+1) first order ODE to 1 second order ODE

• Nontrivial solution when d>2

• Numerical solution gives percolation threshold (d=3)

• The size distribution of components at the critical point

• Mean-field percolation 

d2u

dτ2
+

nd−1

ν

du

dτ
− xd

pd−1

ν
= 0

tg = 1.243785, Lg = 0.577200

ck � Ak−5/2

Hamilton-Jacobi theory gives 
all percolation parameters



Finite-size scaling
Degree distribution

      

Regular random graph emerges in several steps 

1. Giant component emerges at finite time 

2. Graph becomes fully connected emerges at time

3. Regular random graph emerges at time  

t1 = 1.243785

t2 ∼ N(lnN)−(d−1)

t3 ∼ N

 

nj �
(d− 1)!

j!
t−1(ln t)−(d−1−j)

Giant fluctuations in completion time

deterministic

stochastic

stochastic

Nn0 ∼ 1 =⇒

Nnd−1 ∼ 1 =⇒



Summary
• Dynamic formation of regular random graphs

• Degree distribution is truncated Poissonian

• Hamilton-Jacobi formalism powerful

• Percolation parameters with essentially arbitrary precision

• Mean-field percolation universality class

• A multitude of finite-size scaling properties

• Giant fluctuations in completion time

Theory applicable to broader set of evolving graphs



chapter 5
aggregation

chapter 12
population 
dynamics

chapter 13
complex 
networks

Cambridge University Press 2010


